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1 SUMMARY

In this TC, the algorithms used to control the scan mirror during the uniform part of an elevation
scan are derived. These algorithms include precompensation, feedforward compensation and
feedback compensation. For the sake of the simplicity of the scanner control system, it is critical
that the scan mirror be both statically and dynamically balanced. In this case, only the pitch and
roll motions of the optical bench need to be measured to inertially  stabilize the line of sight
(LOS), and the compensation algorithms do not have to be changed depending on the gravity
environment.

For reference, the algorithms for the control of a balanced scan mirror are summarized in the
remainder of this section.

1.1  Notations

mi Output signal of accelerometer number i normalized by accelerometer scale
factor

α1 Actual optical bench inertial roll acceleration
α2 Actual optical bench inertial pitch acceleration
ˆ α 1 Estimate of α1 retrieved from optical bench acceleration measurements
ˆ α 2 Estimate of α2 retrieved from optical bench acceleration measurements
ˆ α 1f Filtered estimate of α1
ˆ α 2f Filtered estimate of α2

θ3 Actual optical bench inertial roll angle
θ2 Actual optical bench inertial pitch angle
ˆ θ 3f Filtered estimate of θ3

ˆ θ 2f Filtered estimate of θ2

Ý ˆ θ 3f
Filtered estimate of Ý θ 3

Ý ˆ θ 2f
Filtered estimate of Ý θ 2

Ý Ý ˆ θ 3f
Filtered estimate of Ý Ý θ 3

Ý Ý ˆ θ 2f
Filtered estimate of Ý Ý θ 2

e Actual scan mirror elevation shaft angle
e0 elevation shaft angle when the scan mirror is in its unpowered equilibrium

position
ec Commanded scan mirror shaft elevation angle
∆ec Scan mirror elevation angle command correction
∆Ý e c Scan mirror elevation rate command correction
∆Ý Ý e c Scan mirror elevation acceleration command correction
a Actual scan mirror azimuth shaft angle
IS22 Scan mirror inertia about elevation axis
Ks Scan mirror flexure stiffness
Ds Scanner elevation axis viscous damping coefficient
TRS Scanner elevation motor torque



Tp Precompensation component of scanner elevation motor torque
Tfb Feedback component of scanner elevation motor torque
Tff Feedforward component of scanner elevation motor torque

1.2 Control algorithms

In the following, all the algorithms are expressed in the continuous time domain. Which parts of
these algorithms should be implemented digitally is a hardware implementation issue.

Retrieval of optical bench pitch and roll acceleration from accelerometer measurements

The current plan is to retrieve the inertial roll and pitch acceleration of the optical bench using
four accelerometers at all times even though more accelerometers may be available for reliability
and redundancy reasons.
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where Mα1 and Mα2 are constant matrices that depend on the accelerometer locations and
measurement axes, or equivalently, if the accelerometer measurement axes are all parallel to one
another:
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where Dα1 and Dα2 are constant matrices that depend on the accelerometer locations and the
common accelerometer measurement axis. In this last case, the retrieval algorithm is insensitive
to gravity.

Filtered estimates of optical bench pitch and roll motions

Ý Ý ˆ θ 3f = B s( ) ˆ α 1
Ý Ý ˆ θ 2f = B s( ) ˆ α 2
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where B(s) is the fourth-order bandpass Butterworth filter:
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where ω1 and ω2 are the lower and upper filter cut-off frequencies respectively.
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Scan mirror shaft elevation angle, rate, and acceleration command corrections

∆ec =
−cos 2a( ) ˆ θ 2 f + sin 2a( )θ3 f

2 cosa

∆ Ý e c =
−cos 2a( )Ý ˆ θ 2 f + sin 2a( )Ý ˆ θ 3 f

2 cosa

∆Ý Ý e c =
−cos 2a( )Ý Ý ˆ θ 2 f + sin 2a( )Ý Ý ˆ θ 3 f

2 cosa

Precompensation torque

Tp = IS22Ý Ý e c + Ds Ý e c + K s ec − e0( )

Feedforward correction torque

Tff = IS22∆Ý Ý e c + Ds ∆Ý e c + K s∆ec − IS22 sina  ˆ α 1f + IS22 cosa  ˆ α 2 f

Feedback torque

Tfb = K s( ) ec + ∆ec − e( )

where K(s) is the transfer function matrix of the PID controller

K s( ) =
K i

s
+ Kp + Kd

s
1 + s / ωd

where Ki, Kp, Kd, ωd are constants.



Control torque

TRS = Tp + Tff + Tfb



2 ELEVATION ANGLE COMMAND CORRECTION

The scan mirror elevation feedback control system regulates the angular position of the scan
mirror relative to the optical bench. To meet the ITS rate and jitter requirements, however, we
must control the angular position of the scan mirror relative to inertial space instead. In the
presence of inertial optical bench motions, the precomputed scan mirror LOS elevation
commands must therefore be corrected to account for these motions so that the desired inertial
LOS motions are obtained. The object of this section is to derive the appropriate angle command
corrections.

2.1  Preliminaries and assumptions

The optical bench is assumed rigid and is therefore represented by a single rigid body called O.
Similarly, the scan mirror is represented by a single rigid body called S. It is assumed that all the
components of the optical system at the exception of the scan mirror are rigidly connected to the
optical bench. The telescope projected optical axis is then a line fixed at all times in the optical
bench. The scan mirror datum position is used as a reference to define the scan mirror elevation
and azimuth shaft angles. When the scanner is in its datum position, misalignments of the
scanner azimuth and elevation axes, relative to the TRCF Z- and Y-axes, respectively, are
negligible within the tolerance requirements given in the ITS. It is therefore assumed that the
scanner azimuth and elevation axes are parallel to the TRCF Z- and Y-axes respectively when the
scan mirror is in its datum position. Similarly, lack of orthogonality between the scan mirror
elevation and azimuth axes is negligible, within the tolerance requirements given in the ITS, and
it is therefore assumed that the scanner azimuth and elevation axes are orthogonal to one another.
Finally, it is assumed that the scanner elevation and azimuth axes intersect at a point called the
scanner datum point SD.

2.2  Nomenclature

{n1, n2, n3} Dextral set of orthogonal unit vectors fixed in a Newtonian reference
frame N

{ο1, ο2, ο3} Dextral set of orthogonal unit vectors fixed in the rigid body O
(optical bench) and nominally parallel to {n1, n2, n3}
{o1, o2, o3} can be regarded as the telescope reference coordinate
frame (TRCF)

{s1, s2, s3} Dextral set of orthogonal unit vectors fixed in the rigid body S (scan
mirror) and nominally parallel to {n1, n2, n3}

θ1, θ2, θ3 Body 3_321 Euler angles describing the orientation of optical bench O
in reference frame N

 θ1, θ2, θ3 are also called the optical bench yaw, pitch, and roll angles
respectively

ˆ r Unit vector fixed in {o1, o2, o3} and parallel to the telescope projected
optical axis

ˆ i Unit vector parallel to the instantaneous line of sight
E0 Angle between o1 and the telescope projected optical axis
E Actual line-of-sight elevation angle



Ec Commanded line-of-sight elevation angle
A Actual line-of-sight azimuth angle
e Actual scan mirror elevation shaft angle
a Actual scan mirror azimuth shaft angle

2.3  Line-of-sight elevation angle

Following the definitions of the LOS azimuth and elevation angles given in the ITS, we have:

ˆ i = − cos A cos E  n1 − sin A cos E  n2 + sin E  n3 (1)

The unit vector defining the direction of the telescope projected optical axis is given by:

ˆ r = cos E0  o1 + sin E0  o3 (2)

A ray parallel to the telescope projected optical axis hitting the scan mirror is reflected out into
the atmosphere into a ray parallel to the line of sight. We therefore have:

ˆ i = ˆ r − 2 ˆ r ⋅ s1( )s1 (3)

Comparing the n3 components of ˆ i  in equations (1) and (3), we find that:

sin E = sin E0 cos 2e( )+ cos E0 cosa  sin 2e( )[ ]cosθ2 cosθ3 (4)

                                          − cos E0 + 2 sin E0 sine − cos E0 cosa  cose( )cosa  cose[ ]sin θ2

                       +2 sin E0 sine − cos E0 cosa  cose( ) sin a  cose  cosθ2 sin θ3

We will find it convenient to introduce the following notations:

      λ = cos2 E0 cos2 a + sin2 E0 (7)

cosφ =
cosE0 cos a

cos 2 E0 cos2 a + sin2 E0

(8)

sinφ =
sin E0

cos2 E0 cos2 a + sin2 E0

(9)

Equation (6) can then be rewritten:

sin E
λ

= sin 2e + φ( )  cosθ2 cosθ3 − cosφ sin2 a
cos a

− cosa  cos 2e + φ( ) 
  

 
  sin θ2

            − sin a  cos 2e + φ( )+ cosφ[ ] cosθ2 sinθ3

(11)



Equation (11) gives the LOS elevation angle in terms of the scanner azimuth and elevation
angles, and of the orientation of the optical bench relative to inertial space. It should be noted that
the LOS elevation angle does not depend on the orientation of the optical bench in yaw.

2.4  Exact elevation angle command correction

Instead of working in both LOS and shaft elevation angle space, we will find it more convenient
to work in shaft elevation angle space only. To this end, we introduce ec according to the
following equation:

sin Ec = λsin 2ec + φ( ) (12)

ec is the scan mirror elevation shaft angle command that must be followed in order to obtain the
desired LOS elevation angle Ec in the absence of inertial optical bench motion.

In the presence of inertial optical bench motion, the LOS elevation angle is equal to the
commanded LOS elevation angle if and only if the scanner elevation angle e is equal to e c  which
is defined by the following equation:

sin 2ec + φ( )= sin 2e c + φ( )cosθ2 cosθ3 − cosφ
sin2 a
cosa

− cosa  cos 2e c + φ( ) 
  

 
  sinθ2

                     − sin a  cos 2e c + φ( )+ cosφ[ ] cosθ2 sinθ3

(13)

e c  and not ec should therefore be the scan mirror elevation shaft angle command in this case.
Equation (13) can be solved explicitly for e c . The elevation angle command correction ∆ec is
then given by:

∆ec = e c − ec (14)

For the implementation of the LOS feedforward algorithms, however, we need only linear
approximations to ∆ec . These approximations are given in the next section.

2.5  Linearized elevation angle command correction

To first order in θ2, θ3, and ∆ec, the elevation angle command correction is:

∆ec =
cosφ sin2 a − cos2 a cos 2ec + φ( )

2 cosa  cos 2ec + φ( )
θ2 +

sin a  cos 2ec + φ( )+ cosφ( )
2 cos 2ec + φ( )

θ3 (15)

In the HIRDLS operation, the commanded elevation shaft angle will be on the order of a few
degrees. The elevation angle command correction could therefore be further linearized with
respect to ec. When this is done, the expression of the elevation angle command correction
reduces to:



                      ∆ec =
−cos 2a( )θ2 + sin 2a( )θ3

2 cosa
                              (16)

The results of simulation studies not described in this TC show that (16) is likely to be an
adequate approximation to the required elevation angle command correction, but of course better
results are obtained if the approximation given in (15) is used instead.



3 DYNAMICS EQUATION OF MOTION OF SCAN MIRROR

In the following section, the dynamics equation of motion of the scan mirror is given when the
scan mirror is maintained at a fixed azimuth angle and when the motion of the optical bench is
prescribed. The scan mirror dynamics equation of motion derived under these conditions is
appropriate to derive the torque component of the feedforward algorithms, because the scan
mirror commanded accelerations are small during the uniform part of an elevation scan, and,
because the inertia of the optical bench about the scan mirror elevation axis is about 4000 times
larger than that of the scan mirror, the angular motion of the optical bench in first approximation
is not significantly influenced by the scan mirror elevation motor torques reacted on the bench.

3.1  Preliminaries and assumptions

The optical bench is assumed rigid and is therefore represented by a single rigid body called O.
Similarly, the scan mirror is represented by a single rigid body called S. It is assumed that the
translational and rotational motions of the optical bench are not significantly affected by the
motion of the scan mirror; these optical bench motions are therefore considered specified. It is
assumed that the scan mirror azimuth angle is constant, since LOS feedforward stabilization is
only needed under this condition. The scan mirror datum position is used as a reference to define
the scan mirror elevation and azimuth shaft angles. The equilibrium position of the scan mirror
on its flexural pivot in the absence of any motor torque need not coincide with the scan mirror
datum position: that equilibrium position is defined by the elevation shaft angle e0. When the
scanner is in its datum position, misalignments of the scanner azimuth and elevation axes relative
to the TRCF Z- and Y-axes, respectively, are negligible within the tolerance requirements given
in the ITS. It is therefore assumed that the scanner azimuth and elevation axes are parallel to the
TRCF Z- and Y-axes, respectively, when the scan mirror is in its datum position. Similarly, lack
of orthogonality between the scan mirror elevation and azimuth axes within the tolerance
requirements given in the ITS are negligible, and it is therefore assumed that the scanner azimuth
and elevation axes are orthogonal to one another. Finally, it is assumed that the scanner elevation
and azimuth axes intersect at a point called the scanner datum point, SD.



3.2  Nomenclature

{n1, n2, n3} Dextral set of orthogonal unit vectors fixed in a Newtonian reference
frame N

{ο1, ο2, ο3} Dextral set of orthogonal unit vectors fixed in the rigid body O
(optical bench) and nominally parallel to {n1, n2, n3}
{ο1, ο2, ο3} can be regarded as the telescope reference coordinate
frame (TRCF)

{s1, s2, s3} Dextral set of orthogonal unit vectors fixed in the rigid body S (scan
mirror) and nominally parallel to {n1, n2, n3}

SD Scan mirror datum point
θ1, θ2, θ3 Body 3_321 Euler angles describing the orientation of optical bench

O in reference frame N
 θ1, θ2, θ3 are also called the optical bench yaw, pitch, and roll angles,

respectively
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α Angular acceleration of O in reference frame N
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γ Linear acceleration of SD in reference frame {n1, n2, n3}
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g Acceleration of gravity
ˆ G Unit vector pointing in the direction of the gravity vector
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Vector of coordinates of ˆ G  in reference frame {n1, n2, n3}

SO Scan mirror center of mass
SDSO Position vector from SD to SO

l1
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 
 Vector of coordinates of SDSO in reference frame {s1, s2, s3}

Ms Mass of scan mirror
e Scan mirror shaft elevation angle
e0 Elevation shaft angle when the scan mirror is in its equilibrium

position
a Scan mirror shaft azimuth angle
IS Inertia dyadic of scan mirror S about SD



IS11 IS12 IS13

IS21 IS22 IS23

IS31 IS32 IS33
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Matrix representation of dyadic IS in reference frame {s1, s2, s3}, i.e.,
IS = IS11s1s1 + IS12s1s2 + IS13s1s3 + IS21s2s1 + IS22s2s2 + IS23s2s3
       + IS31s3s1 + IS32s3s2 + IS33s3s3

Ks Scanner flexure stiffness
Ds Scanner flexure viscous damping coefficient
TRS Scanner elevation motor torque

3.3  Linearized dynamics equation of motion of scan mirror

The dynamics equation of motion of the scan mirror linearized with respect to θ1, θ2, θ3, α1, α2,
α3, γ1, γ2, and γ3 is:

IS22Ý Ý e + Ds Ý e + Ks e− e0( )= TRS                                                                                          
 −Ms g l1sin e − l3 cose( )cosa  G1 + l1 sin e− l3 cose( )sin a  G2 + l1 cose + l3 sine( ) G3[ ]      (a)

                               +Ms g l1 sine − l3 cose( )sina  G1 − l1 sine − l3 cose( )cosa  G2[ ]θ1                                 (b)

                               −Ms g l1 cose + l3 sin e( ) G1 − l1sin e − l3 cose( )cosa  G3[ ]θ2                                      (c)

                               +Ms g l1 cose+ l3 sin e( ) G2 − l1 sine − l3 cose( )sin a G3[ ]θ3                                      (d)

                                +M s l1sin e − l3 cose( )cosa  γ 1                                                                        (e) (17)

                                +M s l1sin e − l3 cose( )sina  γ 2                                                                        (f)

                                +M s 11 cose + l3 sin e( )γ 3                                                                               (g)

                                + IS22 sin a − IS12 cosacose − IS23 cosasin e[ ]α1                                                   (h)

                                − IS22 cosa + IS12 sin acose + IS23 sin asine[ ]α2                                                    (i)

                                + IS22 sin e − IS23 cose[ ]α 3                                                                             (j)

To stabilize the instrument LOS in the presence of optical bench linear and angular motions, the
scan mirror torque command TRS must be such that it cancels the terms (a) through (j) in Eq.
(17). It should be noted that, in general, TRS depends on motions of the optical bench in all
degrees of freedom.

The terms (a) through (d) arise because the gravity force acting on the scan mirror has a moment
about the scan mirror elevation axis. The terms (e) through (g) arise because inertial forces acting
on the scan mirror have a moment about the elevation axis. The terms (h) through (j) arise
because inertial torques acting on the scan mirror have a moment about the elevation axis.



When the scan mirror is statically balanced (i.e., l1
2 + l3

2 = 0 ), the moment about the elevation
axis of the gravity and inertial forces acting on the scan mirror vanishes. When the scan mirror is
dynamically balanced (i.e., IS12 = 0 and IS23 = 0), the (j) term in Eq. (17) vanishes. The motion of
the scan mirror, to first order, is then unaffected by the yaw angular motion of the optical bench.

For the sake of the simplicity of the LOS feedforward algorithms and of the inertial motion
sensing system, the feedforward torque needed to stabilize the instrument LOS should depend on
motions of the optical bench in as few degrees of freedom as possible. From this point of view, it
is critical that the scan mirror be both statically and dynamically balanced. When this is the
case, the dynamics of the scan mirror only depend on the pitch and  roll motions of the optical
bench. Also, to the extent that the optical bench inertial motion sensing system is insensitive to
gravity, the feedforward algorithms become independent of gravity which is critical to the
traceability of the LOS stability performance observed in the laboratory to the on-orbit situation.

When the scan mirror is statically and dynamically balanced, the linearized equation of motion of
the scan mirror reduces to:

          IS22Ý Ý e + DsÝ e + Ks e − e0( ) = TRS + IS22 sina  α1 − IS22 cosa  α2             (18)

4. PRECOMPENSATION AND ELEVATION TORQUE COMMAND 
CORRECTION

The current plan is to use a combination of precompensation, feedback compensation and
feedforward compensation to control the scan mirror. Precompensation is an open-loop control
strategy which is used to improve command following and settling time over what is achievable
using feedback compensation alone. Accordingly, we decompose the scan mirror elevation
torque TRS into three components: the precompensation component Tp, the feedforward
correction component Tff, and the feedback component Tfb.

TRS = Tp + Tff + Tfb (19)

The object of this section is to give the definitions and to derive the algorithms associated with
each of these three torque components. We shall assume that the scan mirror is both statically
and dynamically balanced.

4.1  Scan mirror precompensation torque

The scan mirror precompensation torque is the torque that would have to be applied to the scan
mirror to exactly follow the desired LOS elevation angle Ec in the absence of inertial optical
bench motion, assuming that the motion of the scan mirror is governed exactly by the dynamics
equation (18). This torque component is given as follows:

                      Tp = IS22Ý Ý e c + Ds Ý e c + K ec − e0( )                              (20)



4.2  Scan mirror feedforward correction torque

The feedforward torque is the correction that must be added to the precompensation torque to
exactly follow the desired LOS elevation angle Ec in the presence of inertial optical bench motion
assuming that the motion of the scan mirror is governed exactly by the dynamics equation (18).
Introducing the elevation angle command correction ∆ec, the elevation rate command correction
∆Ý e c , and the elevation acceleration command correction ∆Ý Ý e c , the feedforward torque can
formally be expressed as follows:

          Tff = IS22∆Ý Ý e c + Ds∆Ý e c + K s∆ec − IS22 sina  α1 + IS22 cosa  α2               (21)

It can be shown that:

∆Ý e c =
d∆ec

dt
(22)

∆Ý Ý e c =
d2 ∆ec

dt 2 (23)

where d/dt denotes the time derivative and where ∆ec is given by Eq. (15) or Eq. (16), depending
on what elevation angle command correction formulae is used. Hence when the simpler elevation
angle command correction formulae (16) is used, Tff is given by (21) together with:

                              

                      ∆ec = −cos 2a( )θ2 + sin 2a( )θ3

2 cosa

                       ∆ Ý e c = −cos 2a( )Ý θ 2 + sin 2a( )Ý θ 3
2 cosa

                      ∆Ý Ý e c = −cos 2a( )Ý Ý θ 2 + sin 2a( )Ý Ý θ 3
2 cosa

                             

(24)

When the more complex elevation angle command correction formulae given in (15) is used, the
expression of the feedforward correction torque involves the first and second order time
derivatives of the elevation command ec and is significantly more complicated.

4.3  Scan mirror feedback torque

Precompensation and feedforward compensation are open-loop control strategies. Their
performance depends on the accuracy of the models and on the accuracy of the approximations
that went into their derivation. Feedback compensation provides the means to  correct for
residual LOS control errors after precompensation and feedforward compensation are applied to
the scan mirror. In the HIRDLS feedback system, the scan mirror elevation angle commands are
compared to the scan mirror shaft elevation angle measured by the MicroE encoder, and the
differences are used to generate the feedback torque commands that are applied to the scan



mirror to correct for those differences. The HIRDLS scan mirror feedback control system is a
simple PID controller with transfer function K given by:

K s( ) =
K i
s

+ Kp + Kd
s

1 + s / ω d

(25)

where s is the usual Laplace variable. The PID controller gains Ki, Kp, and Kd are calculated as
follows:

tc =
1+ 2( )
2πbw

(26)

k = IS22

1+ 2( )
tc 2      (27)

K i = k
2 −1( )
tc

(28)

K p = k (29)

K d = k  tc (30)

where bw is the desired controller bandwidth.

Following the notations of the above sections, the elevation angle command error ε is:

ε = e c − e (31)

The scan mirror feedback torque is therefore given by:

                      Tfb = K s( ) e c − e( )                              (32)

5 OPTICAL BENCH INERTIAL MOTION SENSING AND RETRIEVAL

In the previous sections, we have determined that, in their simplest form, the feedforward LOS
stabilization system only needs information on the inertial motions of the optical bench in the
pitch and roll degrees of freedom. The current plan is to use accelerometers to measure these
inertial motions. This section derives the algorithms involved in the retrieval of the inertial pitch
and roll motions of the optical bench from the accelerometer measurements. Several issues are
discussed, including influence of gravity on the measurements, number of accelerometers
required, and accelerometer configuration.



5.1  Preliminaries and assumptions

The accelerometers are assumed to be force-balanced servo accelerometers, and the
accelerometer measurements are assumed to be AC coupled. To facilitate the derivation of the
bench inertial motion retrieval algorithms, it is assumed that all the accelerometers have the same
noise characteristics. This assumption only affects the derivation of the retrieval algorithms, not
their complexity.

The optical bench is assumed rigid and is therefore represented by a single rigid body called O. It
is assumed that the scanner elevation and azimuth axes intersect at a point called the scanner
datum point, SD.

The inertial motions, rates, and accelerations of the optical bench are assumed to be small
compared to unity.



5.2  Nomenclature

{n1, n2, n3} Dextral set of orthogonal unit vectors fixed in a Newtonian reference
frame N

{ο1, ο2, ο3} Dextral set of orthogonal unit vectors fixed in the rigid body O
(optical bench) and nominally parallel to {n1, n2, n3}
{ο1, ο2, ο3} can be regarded as the Telescope Reference Coordinate
Frame (TRCF)

θ1, θ2, θ3 Body 3_321 Euler angles describing the orientation of optical bench O
in reference frame N

 θ1, θ2, θ3 are also called the optical bench yaw, pitch and roll angles
respectively

ˆ θ 1, ˆ θ 2, ˆ θ 3 Estimate of θ1, θ2, θ3 respectively

  
r 
ω Angular velocity of O in reference frame N
  
r 
α Angular acceleration of O in reference frame N
  
r ˆ α Estimate of   

r 
α 

α1

α2

α3

 

 

 
 

 

 

 
 

Vector of coordinates of   
r 
α  in reference frame {ο1, ο2, ο3}

ˆ α 1, ˆ α 2, ˆ α 3 Estimate of α1, α2, α3 respectively
SD Point of optical bench defining the location of scanner datum
SD0 Point fixed in Newtonian frame N defining the nominal location of

scanner datum SD
  
r 
γ Linear acceleration of SD in reference frame {n1, n2, n3}

  
r ˆ γ Estimate of   

r 
γ 

g Acceleration of gravity
ˆ G Unit vector pointing in the direction of the gravity vector

Ai Point of optical bench defining the location of accelerometer number i
A i

0 Point fixed in Newtonian frame N defining the nominal location of
accelerometer number i

  
r 
p i Position vector from SD to Ai

  
r 
p i

0 Position vector from SD0 to A i
0

  
r 
r ij Position vector from Ai to Aj

  
r 
r ij

0 Position vector from A i
0  to A j

0

ˆ u i
0 Unit vector fixed in {n1, n2, n3} pointing in the nominal direction of

the measurement axis of accelerometer number i
ˆ u i Unit vector fixed in {ο1, ο2, ο3} pointing in the direction of the

measurement axis of accelerometer number i
mi Output signal of accelerometer number i normalized by accelerometer

scale factor



5.3  Accelerometer measurements

According to the assumptions and the definitions given in the last two sections, the measurement
of accelerometer number i is given by:

  m i = ˆ u i ⋅
r 
γ +

r 
p i × ˆ u i( )⋅

r 
α +

r 
ω ×

r 
ω ×

r 
p i( )[ ]⋅ ˆ u i + g ˆ G ⋅ ˆ u i − ˆ u i

0( ) (33)

where   
r 
u ×

r 
v  denotes the cross-product of vectors   

r 
u  and   

r 
v , and where   

r 
u ⋅

r 
v  denotes the inner-

product of vectors   
r 
u and   

r 
v .

To first order in   
r 
ω , the gyroscopic term is negligible. Also, for small variations in the inertial

orientation of the optical bench, the change in the direction of the accelerometer measurement
axis can be expressed as:

  ̂ u i − ˆ u i
0 =

r 
θ × ˆ u i

0 (34)

where   
r 
θ = θ3n1 + θ2 n2 +θ1n3 . To first order, the expression for the measurement of

accelerometer number  i can therefore be rewritten as:

  
m i = ˆ u i

0 ⋅
r 
γ +

r 
p i

0 × ˆ u i
0( )⋅

r 
α − g ˆ G × ˆ u i

0( )⋅ r θ (35)

The accelerometer measurements are linear combinations of the optical bench inertial linear
acceleration, inertial angular acceleration, and inertial angular position. Equation (35) gives
simple explicit expressions for the coefficients involved in these linear combinations. Note that
the linear acceleration and the angular position coefficients are independent of the accelerometer
position which is important when only inertial angular accelerations need to be measured.

For HIRDLS, we would like the optical bench inertial motion sensing system to be insensitive to
gravity so that the results of the performance verification tests performed in the laboratory can be
traced to actual performance on-orbit. Such a motion sensing system can be devised because we
only need to measure the inertial rotational motions of the optical bench. Recall that this is only
the case when the scan mirror is statically balanced. Should the scan mirror be statically
imbalanced, we would have to measure at least one component of the linear acceleration. An
optical bench motion sensing system insensitive to gravity could then be constructed, but only for
some specific orientation of the HIRDLS instrument in the 1g field. When only rotational
motions need to be measured, one way to make the inertial motion sensing system insensitive to
gravity is to use pairs of accelerometers having the same measurement axis.

If two accelerometers i and j have the same measurement axis, then, to first order, the difference
between their normalized output signals is:

  m i − m j =
r 
r ij

0 × ˆ u i
0( )⋅

r 
α (36)



Only two such pairs, that is three accelerometers, are needed to measure the inertial pitch and roll
motions of the optical bench. Measurement sensitivity for a given pair of accelerometers is
proportional to accelerometer separation.

Although insensitivity of the optical bench motion sensing system to gravity is desired, it does
not have to be perfectly achieved because the HIRDLS application does not require measuring
angular accelerations down to low frequencies. For a given amplitude periodic angular motion of
the optical bench at the frequency f, the relative magnitude R between the gravity and the angular
acceleration terms in the accelerometer measurement equation (35) is roughly comparable to:

  

R ≈
g ˆ G × ˆ u i

0

r 
p i

0 × ˆ u i
0 2πf( )2 (37)

When   
r 
p i

0  is normal to ˆ u i
0 ,   

r 
p i

0  = 0.25 meter, and when ˆ u i
0  points 30 degrees off the vertical,

then R is less than 0.1 for all frequencies above approximately 2.2 Hz. Since it is not expected
that we will have to inertially rate stabilize the HIRDLS LOS below about 5 Hz, some degree of
sensitivity of the optical bench angular motion sensing system to gravity can be tolerated.

5.4  Optical bench inertial angular acceleration retrieval algorithm

The current plan is to retrieve the inertial roll and pitch acceleration of the optical bench using
four accelerometers at all times even though more accelerometers may be available for reliability
and redundancy reasons. All accelerometers will have their measurement axis parallel to the
TRCF Z-axis to maximize the sensitivity of the motion sensing system to pitch and roll motions
(yaw accelerations are of no interest).

When all four accelerometers have the same noise characteristics, independently of whether the
accelerometers have parallel measurement axes, optimal estimates of the optical bench inertial
linear acceleration, inertial angular acceleration and inertial angular motion are obtained from the
measurement equation (35) as follows:

  

r ˆ γ 
r ˆ α r ˆ θ 

 

 

 
 

 

 

 
 

=

ˆ u 1
0( )T r 

p 1
0 × ˆ u 1

0( )T
−g ˆ G × ˆ u 1

0( )T

ˆ u 2
0( )T r 

p 2
0 × ˆ u 2

0( )T
−g ˆ G × ˆ u 2

0( )T

ˆ u 3
0( )T r 

p 3
0 × ˆ u 3

0( )T
−g ˆ G × ˆ u 3

0( )T

ˆ u 4
0( )T r 

p 4
0 × ˆ u 4

0( )T
−g ˆ G × ˆ u 4

0( )T
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m3

m4
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 
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 
 

(38)

where M# and MT denotes the Moore-Penrose pseudo-inverse and the transpose of the matrix M
respectively. Partitioning the pseudo-inverse of the regressor matrix involved in Eq. (38)

consistently with 
  

r ˆ γ T  
r ˆ α T  

r ˆ θ T 
 

 
 

T

into Mγ
T  Mα

T  M θ
T[ ]T

, we arrive at:



  

r ˆ α = Mα

m1

m2

m3

m4

 

 

 
 
 

 

 

 
 
 

(39)

When the accelerometer measurement axes are all parallel to one another, it can be shown that
(39) is equivalent to:

  

r ˆ α =

r 
r 12

0 × ˆ u 0( )T

r 
r 13

0 × ˆ u 0( )T

r 
r 14

0 × ˆ u 0( )T

r 
r 23

0 × ˆ u 0( )T

r 
r 24

0 × ˆ u 0( )T

r 
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 

(40)

where ˆ u 0  denotes the common accelerometer measurement axis.  Upon Eq. (36), the above
equivalence shows that the optimal retrieval algorithms are independent of gravity in this case.
This is true for any choice of the common accelerometer measurement axis.

The retrieval algorithms given in (39) or (40) can easily be generalized to the case where more
than four accelerometers are used. To obtain the correct result in (40), all possible unordered
accelerometer pairs (i.e., n(n-1)/2 pairs where n is the number of accelerometers) must be
included.

5.5  Retrieval of feedforward component of optical bench inertial pitch and roll
       angles and accelerations

Filtered estimates rather than the raw estimates of the inertial pitch and roll angles and
accelerations will be used in the LOS feedforward algorithms. The raw estimates of the roll and
pitch accelerations are given by:
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ˆ α 2
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                              (41)



where Mα1 and Mα2 are the first and second rows of Mα respectively, if Eq. (39) is used, or
equivalently by:

                       
ˆ α 1
ˆ α 2
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                        (42)

where Dα1 and Dα2 are the first and second rows respectively of the matrix pseudo-inverse in
(40), if Eq. (40) is used and if the accelerometer measurement axes are all parallel to one another.

LOS feedforward stabilization for HIRDLS will be approximately limited to the 5 to 100 Hz
frequency range. Below about 5 Hz (TBV), inertial stabilization is not required and is limited by
accelerometer drift. Above 100 Hz, inertial stabilization is limited by optical bench flexibility. To
avoid adding a drift term on the scanner elevation command at low frequencies and to avoid
feeding optical bench structural vibrations to the scanner motor at high frequencies, the raw
estimates of the optical bench pitch and roll accelerations will be bandpass filtered before they
are used in the feedforward algorithms. Fourth order Butterworth filters are representative of the
bandpass filters required. Such filters are of the form:

B s( )=
s2 ω1

2 + ω2
2( )

s2 + 2ω1s + ω1
2( ) s2 + 2ω2s + ω2

2( ) (43)

where s is the usual Laplace variable, and where ω1 and ω2 are the lower and upper filter cut-off
frequencies respectively. Typical filtered estimates of the roll and pitch accelerations are
therefore of the form:

                      Ý Ý ˆ θ 3f = B s( ) ˆ α 1

                      Ý Ý ˆ θ 2f = B s( ) ˆ α 2                                
(44)

Filtered estimates of the roll and pitch angles are obtained by integrating the filtered roll and
pitch acceleration estimates:



                      Ý ˆ θ 3f =
B s( )

s
ˆ α 1

                       
                      Ý ˆ θ 2f =

B s( )
s

ˆ α 2                        
(45)

Filtered estimates of the roll and pitch angles are obtained by integrating the filtered roll and
pitch acceleration estimates twice:

                      ˆ θ 3f =
B s( )
s2

ˆ α 1
                       
                      ˆ θ 2f =

B s( )
s2

ˆ α 2                        
(46)



5.6  Hardware implementation of motion sensing system

Equations (41) and (42) point to two different hardware implementations of the optical bench
motion sensing system. According to the first equation, one would sample the raw accelerometer
analog signals and digitally perform a matrix vector multiplication to get the estimate the optical
bench angular acceleration. According to the second equation, one would first difference the
accelerometer signals (using differential amplifiers for example), then sample the differences and
finally digitally perform a matrix vector multiplication to get the estimate of the optical bench
angular acceleration. The second implementation is more complex and becomes impractical
when more than four accelerometers are used. For HIRDLS, however, it is the recommended one
because we will likely have to measure small optical bench angular accelerations in the presence
of relatively large optical bench linear accelerations. Also, in that second implementation, the
resolution and range of the analog-to-digital converters can be tailored to the expected angular
accelerations, which are the quantities of direct interest, rather than the relatively large maximum
expected raw accelerometer signals. Reaching a final decision regarding the appropriate
implementation may require some experimental testing.

When the accelerometer measurement axes are not exactly parallel to one another or when the
accelerometers have slightly different noise characteristics, the retrieval algorithm given by Eq.
(42) is not optimal and the estimates of the angular acceleration are affected by gravity at low
frequencies. Some analysis will have to be performed to determine what the maximum variations
in accelerometer noise characteristics and what the maximum degree of accelerometer
measurement axis misalignment are that would allow us to use the retrieval algorithm given in
Eq. (42) without significant loss of accuracy.

Bandpass filtering of the optical bench acceleration estimates could be done in analog, digitally,
or a combination of both. All digital implementations are the simplest since only two signals
need to be filtered. All analog implementations are the most complex since all analog signals
must be filtered (i.e., 8 or 12 signals for a fully redundant sensing system depending on the
version of retrieval algorithm used), but they provide good protection against aliasing.
Implementing the low-pass portion of the filters in analog and the high-pass portion of the filters
digitally may provide a suitable compromise between complexity and performance.


